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Abstract

Brain connectomes is a comprehensive map that shows the structural and functional
connectivity of neural pathways in the human brain. Analyzing the information
encoded by connectomes can promote a critical understanding of the early diagnosis
of many neuropsychiatric disorders, such as Autism Spectrum Disorder (ASD).
Brain connectomes data is usually represented as a graph with a connectivity
matrix illustrating the strength of neural connections (e.g. temporal correlation
of brain activities) between brain regions. In contrast to classical graph analysis
methods that depend on hand-engineering descriptors, recent progress of extending
deep learning approaches to non-grid data have opened new opportunities for
building predictive models for brain connectomes in a data-driven learning fashion.
However, due to the existence of large noise and limited training samples, directly
applying a deep network is prone to over-fitting. In this work, we present a novel
graph convolutional neural network (GCN) with node-wise batch normalization and
embedding normalization 1 for better generalization. We performed experiments
on the ABIDE dataset and achieved state-of-the-art 68.7% classification accuracy.

1 Introduction

Functional connectivity, as often captured by correlations between resting-state functional MRI
(rs-fMRI) signals, has produced novel insights linking differences in brain organization to the
individual or group-level characteristics. Recently, machine learning models are being increasingly
applied to study and exploit individual variation in functional connectivity data. Khosla et al. [1]
demonstrated a volumetric Convolutional Neural Network (CNN) framework for Autism Spectrum
Disorder (ASD) classification by concatenating voxel-level connectivity maps. On the other hand,
node-level connectivity is more commonly used in network neuroscience to illustrate the underlying
mechanisms of complex brain function [2]. The advances in graph analysis and the generalization of
deep neural networks to non-grid data make node-level connectomes a more attractive tool to analyze
brain relationships in a large population of subjects. Zhang et al. [3] used a graph convolutional
network (GCN) to extract graph embedding from connectomes and exploit them in inferring the
graph structure of the data.

Handling node-level functional connectivity poses a series of challenges. First, Given the sensitivity
of rs-fMRI measurements to physiological variables, the acquired signals usually suffer from low
test-retest reliability [4]. Noise and artifacts are further accumulated due to the limitation of current
prepossessing methods for connectomes data. Second, connectomes, representing complex brain
functional networks, are high-dimensional data with entries in the scale of 104 or even 106. However,
most existing datasets only consist of a few hundred subjects. Due to those factors, neural network
models face severe over-fitting problems when training on connectomes.

In this work, we proposed a GCN framework with two novel embedding normalization layers for
connectomes-based classification. We tested our method on a well-known dataset, The Autism Brain

1code available at https://github.com/Sherry-SR/dl_graph_connectomes
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Figure 1: Proposed multi-layer Graph Convolutional Network (GCN).

Imaging Data Exchange (ABIDE) [5], and compare it with other conventional machine learning
and deep learning methods. We showed that our method is easier to train and can achieve better
generalization of the network.

2 Method

In this section, we described our approach for classifying subjects with ASD. Figure 1 illustrates
an overview of the proposed approach for ASD classification. In the proposed method, we used the
first-order approximation of GCN in the first stage to obtain embedding for a graph, and a multi-layer
perceptron (MLP) in the second stage for the classification task. Multiple normalization tricks were
used to improve the stability in the training process and achieve better generalization. A Dropout
layer was used between MLP to prevent further over-fitting.

2.1 Graph covolutional layer

CNNs enable extraction of statistical features from grid-structured data, in the form of local stationary
patterns, and their aggregation for different semantic analysis tasks, e.g. image recognition [6]. When
the signal of interest does not lie on a regular domain, e.g. graphs, direct application of CNNs might
be problematic due to the presence of convolution and pooling operators which typically defined on
grids. Generalizing the convolution to graphs is a common way to address this problem.

A graph can be represented as {V,E,W}, with V = {v1, v2, . . . , vn} the set of n vertices, E ⊆
V × V the set of m edges, and W ∈ Rn×n the connectivity matrix of the graph. To perform graph
convolution, one strategy is to conduct the operation in the frequency domain using graph Laplacian,
which is feasible according to the convolution theorem. Graph Laplacian is typically defined as

Ln = In −D−1/2WD−1/2

in the normalized form, where D ∈ Rn×n the degreee matrix with the diagonal entries dii =∑
j wi,j and In a identity matrix. Laplacian matrix is positive semi-definite, such that the eigenvalue

decomposition L = UTΛU exists. U = [u0, u1, . . . , un−1] specifies Fourier basis and graph Fourier
transform is defined as x̂ = UTx, with x ∈ Rn the signal. Graph convolution is then defined as

y = Ugθ(Λ)UTx

According to K-order Chebyshev polynomial [7], the filter gθ can be approximated using

gθ(Λ) =

K−1∑
k=0

θkTk(Λ)
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with θk the trainable parameters and Tk(Λ) the polynomials. If we truncate the Chebyshev polynomial
to only first order, graph convolutional layer can be reformulated as

y = σ(D̃−1/2ÃD̃−1/2xΘ)

with Ã = A+ In, D̃ similarly defined as D, Θ trainable parameters, and σ(·) an activation function.

2.2 Normalization for nodes

Two types of novel normalization layers were used to help the stability and convergence in the
training process. Between each graph convolutional layer, a normalization layer was used to reduce
the “covariate shift” for each node. Unlike traditional batch normalization which normalizes the
summed inputs to each channel over the training cases [8], node normalization applies a similar
operation but for each node in the graph. It can be formulated as

x̃vi,j =
xvi,j − Ei∈B,j∈C [xvi,j ]√

V ari∈B,j∈C [xvi,j ]
× γv + βv

where B and C contains indices for each sample in the mini-batch and each channel of the filters
respectively. The node normalization has similar advantages as batch normalization, such as enabling
a higher learning rate and regularizing the model. Additionally, as the graph embedding is generated
in the form of nodes, node normalization which balances the nodes of the graph can improve the
stability and efficiency in extracting embedding.

2.3 Normalization for graph embedding

Another normalization layer was applied between GCN and MLP for each sample over the dimension
of graph embedding, which is defined as

x̃ki =
xki − Ek∈K[xki ]√
V ari∈K[xki ]

where K stands for the embedding dimensions. This normalization is actually equivalent to layer
normalization [9] or instance normalization [10] when input size equals to 1. This layer can act
like contrast normalization over the embedding. It can stabilize the hidden state dynamics and keep
characteristics for an individual sample at the same time. No running average needs to be calculated
during training, and large noise in one sample will not affect each other in the mini-batch.

3 Dataset & Pre-processing

3.1 The Autism Brain Imaging Data Exchange (ABIDE)

ABIDE is a multi-site dataset openly sharing anatomical and functional brain imaging data of
539 individuals diagnosed with Autism Spectrum Disorder (ASD), as well as 573 normal controls
(NC). We used the data processed by the Configurable Pipeline for the Analysis of Connectomes
(CPAC) [11]. This pipeline performs motion correction, global mean intensity normalization and
standardization of fMRI data to MNI space (3 × 3 × 3 mm resolution). We use ABIDE data that
passed quality control (QC) by all the functional raters. This yielded a final sample size of 774
subjects, comprising 379 ASD and 395 NC. In this project, we consider parcellation Dosenbach 160
(DOS 160, N = 161) [12].

3.2 Functional Connectomes

Functional connectomes were generated by first averaging rs-fMRI time series for each ROI, then
calculating the temporal Pearson correlation coefficients between each pair of averaged fMRI signals.
The resulting connectomes data can be represented using a N ×N connectivity matrix illustrating
the strength of neural connections during brain activities.
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4 Experiments

In our experiments, we performed a node-level connectomes-based classification task of ASD v.s.
NC using 4 deep learning frameworks: GCN, GCN with batch normalization (GCN-B), GCN with
embedding normalization (GCN-E), and GCN with both node and embedding normalization (GCN-
NE). We conducted 10-fold cross-validation on the ABIDE dataset. Results are also compared with
other state-of-art voxel-level learning methods.

4.1 Training details

The proposed GCN-NE model was implemented using PyTorch [13]. We applied two GCN layers
with hidden neurons of 40 to extract graph embedding, and two fully connected layers with hidden
neurons of 50 to perform classification. Normalization for nodes was used between GCN layers.
Graph embedding was vectorized from GCN output and normalized for each sample. A dropout
layer with p = 0.5 was used in MLP. Adam with the initial learning rate of 1e−1 and weight decay
of 1e−3 was used in training. The learning rate was reduced every 100 epochs with γ = 0.1. A
batch size of 64 was used. The model was trained on a single Nvidia 1060Ti GPU. The results were
reported on training 2, 000 iterations.

For comparison, similar hyper-parameters were used in GCN, GCN-B, and GCN-E frameworks,
but without using any normalization in GCN, only with embedding normalization in GCN-E, and
replaced node & embedding normalization with two batch normalization layers in GCN-B. For GCN
and GCN-B, the learning rate was adjusted to 1e−3 for better performance.

4.2 Results and discussion

In Table 1 we provide 10-fold cross-validation results obtained with GCN-B, GCN-E, and GCN-NE.
Training for basic GCN with similar hyper-parameters either failed to achieve higher than 55%
accuracy, which means only slighter better than a random guess. Adding normalization layers
improved classification performance significant. Compared with batch normalization, the proposed
normalization layers for node and embedding can achieve better accuracy and are more stable over
different folds. It is worth noting that with proposed normalization layers, we can further enable
a larger learning rate. Table 2 shows a comparison with previously reported methods using voxel-
level connectomes. Our method outperformed others even with much fewer connectomes features.
Meanwhile, node-level connectomes data is easier to generate and more meaningful in network
neuroscience studies.

Table 1: Comparison with Node-level Learning Methods.

Fold 0 1 2 3 4 5 6 7 8 9 Average
GCN-B 61.0 58.4 66.2 59.7 63.6 72.7 62.3 63.6 66.2 64.9 63.9
GCN-E 68.6 62.3 66.2 68.8 64.9 62.3 72.7 66.2 68.8 66.2 66.7

GCN-NE 66.2 67.5 67.5 70.1 67.5 75.3 64.9 71.4 70.2 66.2 68.7
* GCN failed to converge or achieved lower than 55% accuracy.

Table 2: Comparison with State-of-art Voxel-level Learning Methods [1]

Methods Ridge SVM (l1) SVM (l2) FCN 3D-CNN GCN-NE (ours)
Accuracy 66.7 65.3 66.7 67.2 68.6 68.7

5 Conclusion

In this paper, we proposed a GCN framework with novel normalization layers for node-level
connectomes-based classification. We demonstrated that the proposed node and graph embedding nor-
malization layers can achieve better generalization and stability than traditional batch normalization.
We also showed that our method is a more attractive solution in network neuroscience study, with
comparable or even better classification accuracy than many other learning methods for voxel-level
connectomes.
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